题目内容
(1)求证:BP=PE;
(2)若AC=3PC,求
| DB | BC |
分析:(1)作EM⊥AP于M,证△BCP≌△EMP,求出BC=AC=EM,证△ADC≌△EAM,推出即可;
(2)根据全等三角形性质得出CP=PM,DC=AM,设PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案.
(2)根据全等三角形性质得出CP=PM,DC=AM,设PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案.
解答:证明:(1)作EM⊥AP于M,
∵∠ACB=90°,
∴∠M=∠ACD,
∵AD⊥AE,
∴∠DAE=90°,
∴∠EAM+∠AEM=90°,∠EAM+∠DAC=90°,
∴∠DAC=∠AEM,
在△ADC和△EAM中
∴△ADC≌△EAM,
∴AC=EM,
∵AC=BC,
∴BC=EM,
∵∠ACB=90°,
∴∠BCP=∠M,
在△BCP和△EMP中
∴△BCP≌△EMP,
∴BP=PE.
(2)∵△BCP≌△EMP,△ADC≌△EAM,
∴CP=PM,AM=DC,
设PC=PM=x,AC=BC=3x,AM=DC=5x,
∴BD=2x,
∴
=
.
∵∠ACB=90°,
∴∠M=∠ACD,
∵AD⊥AE,
∴∠DAE=90°,
∴∠EAM+∠AEM=90°,∠EAM+∠DAC=90°,
∴∠DAC=∠AEM,
在△ADC和△EAM中
|
∴△ADC≌△EAM,
∴AC=EM,
∵AC=BC,
∴BC=EM,
∵∠ACB=90°,
∴∠BCP=∠M,
在△BCP和△EMP中
|
∴△BCP≌△EMP,
∴BP=PE.
(2)∵△BCP≌△EMP,△ADC≌△EAM,
∴CP=PM,AM=DC,
设PC=PM=x,AC=BC=3x,AM=DC=5x,
∴BD=2x,
∴
| DB |
| BC |
| 2 |
| 3 |
点评:本题考查了三角形内角和定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.
练习册系列答案
相关题目
| A、S1>S2 | B、S1<S2 | C、S1=S2 | D、S1≥S2 |
| A、4 | ||
| B、6 | ||
C、4
| ||
D、4
|