题目内容

如图是一张边被裁直的白纸,把一边折叠后,BC、BD为折痕,A′、E′、B在同一直线上,则∠CBD的度数(  )
A、不能确定B、大于90°
C、小于90°D、等于90°
考点:翻折变换(折叠问题)
专题:
分析:由折叠的性质,即可得:∠ABC=∠A′BC,∠EBD=∠E′BD,然后由平角的定义,即可求得∠A′BC+∠E′BD=90°,则可求得∠CBD的度数.
解答:解:根据折叠的性质可得:∠ABC=∠A′BC,∠EBD=∠E′BD,
∵∠ABC+∠A′BC+∠E′BD+∠EBD=180°,
∴2∠A′BC+2∠E′BD=180°,
∴∠A′BC+∠E′BD=90°,
∴∠CBD=90°.
故选:D.
点评:此题考查了折叠的性质与平角的定义.解题的关键是注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网