题目内容
设,且1-ab2≠0,则= .
1。
【考点】求代数式的值,算术平方根和绝对值的非负数性质,解一元二次方程,整体思想的应用。
∵,∴。
定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形是“等对角四边形”,,,.求,的度数.
(2)在探究“等对角四边形”性质时:
① 小红画了一个“等对角四边形”(如图2),其中,,此时她发现成立.请你证明此结论.
② 由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”中,,,,.求对角线的长.
如图,在矩形纸片ABCD中,AB=5CM,BC=10CM,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过点P作PF⊥AD,交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是( ).
A. cm B.3cm C.2cm D.cm
如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=BFD.
(1)求证:FD是⊙O的一条切线;
(2)若AB=10,AC=8,求DF的长.
已知(x+)(y+)=1.求证:x+y=0.
“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?” 若设共有x个苹果,则列出的方程是( )
(A) (B)
(C) (D)
如果关于x的不等式组:,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对[a,b]共有 个。
如图,Rt△OAB的边OA在x轴的正半轴上,OB在y轴的正半轴上,双曲线过AB的中点C,已知点A的坐标为(,0),点B的坐标为(0,1),则该双曲线的表达式为【 】
A. B. C. D.
某商家经销一种商品,用于装修门面已投资3000元。已知该商品每千克成本50元,在第一个月的试销时间内发现项,当销售单价为70元/ kg时,销售量为100 kg,销量w(kg)随销售单价x(元/ kg)的变化而变化,销售单价每提高5元/ kg,销售量减少10 kg。
设该商品的月销售利润为y(元)(销售利润=单价×销售量-成本-投资)。
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?
(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二个月时里应该确定销售单价为多少元?