题目内容


如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.

(1)求证:AP是⊙O的切线;

(2)OC=CP,AB=6,求CD的长.


【考点】切线的判定与性质;解直角三角形.

【分析】(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;

(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2,CD=4.

【解答】(1)证明:连接AO,AC(如图).

∵BC是⊙O的直径,

∴∠BAC=∠CAD=90°.

∵E是CD的中点,

∴CE=DE=AE.

∴∠ECA=∠EAC.

∵OA=OC,

∴∠OAC=∠OCA.

∵CD是⊙O的切线,

∴CD⊥OC.

∴∠ECA+∠OCA=90°.

∴∠EAC+∠OAC=90°.

∴OA⊥AP.

∵A是⊙O上一点,

∴AP是⊙O的切线;

(2)解:由(1)知OA⊥AP.

在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,

∴sinP==

∴∠P=30°.

∴∠AOP=60°.

∵OC=OA,

∴∠ACO=60°.

在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,

∴AC==2

又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,

∴CD===4.

【点评】本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的关键是熟记特殊角的锐角三角函数值.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网