题目内容


如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.


【考点】全等三角形的判定与性质.

【专题】证明题.

【分析】欲证BE∥CF,需先证得∠EBC=∠FCD或∠E=∠CFD,那么关键是证△BED≌△CFD;这两个三角形中,已知的条件有:BD=DC,DE=DF,而对顶角∠BDE=∠CDF,根据SAS即可证得这两个三角形全等,由此可得出所证的结论.

【解答】证明:∵AD是BC上的中线,

∴BD=DC.

又∵DF=DE(已知),

∠BDE=∠CDF(对顶角相等),

∴△BED≌△CFD(SAS).

∴∠E=∠CFD(全等三角形的对应角相等).

∴CF∥BE(内错角相等,两直线平行).

【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网