题目内容

如图,△ABC中,AB=AC,作AD⊥BC,CE⊥AB,垂足分别为D,E,AD和CE相交于点F,若已知AE=CE.

(1)求证:△AEF≌△CEB;

(2)求证:AF=2CD

(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)要证明△AEF≌△CEB,已知条件有AE=EC,∠AEF=∠BEC=90°,还差一个条件,由AD⊥BC,CE⊥AB可得∠B+∠BAD=90°,∠B+∠BCE=90°,所以得出∠EAF=∠ECB,因此可证明出△AEF≌△CEB;(2)由(1)结论可得:AF=BC,即要证明BC=2CD,由等腰三角形三线合一性质不难证明. 试题解...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网