题目内容
【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数
的图象在第二象限交于点C,CE⊥x轴,垂足为点E,
,OB=2,OE=1.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果SBAF=4SDFO,求点D的坐标.
![]()
【答案】(l) y=
;(2) D(
,-2).
【解析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;
(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,-
)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.
(1)∵OB=2,OE=1,
∴BE=OB+OE=3.
∵CE⊥x轴,
∴∠CEB=90°.
在Rt△BEC中,∠CEB=90°,BE=3,sin∠ABO=
,
∴tan∠ABO=
,
∴CE=BEtan∠ABO=3×
=
,
结合函数图象可知点C的坐标为(-1,
).
∵点C在反比例函数y=
的图象上,
∴k=-1×
=-
,
∴反比例函数的解析式为y=-
.
(2)∵点D在反比例函数y=-
第四象限的图象上,
∴设点D的坐标为(n,-
)(n>0).
在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO=
,
∴OA=OBtan∠ABO=2×
=1.
∵S△BAF=
AFOB=
(OA+OF)OB=
(1+
)×2=1+
.
∵点D在反比例函数y=-
第四象限的图象上,
∴S△DFO=
×|-
|=
.
∵S△BAF=4S△DFO,
∴1+
=4×
,
解得:n=
,
经验证,n=
是分式方程的解,
∴点D的坐标为(
,-2).