题目内容
对于整数a,规定f(a)=
,例如:f(4)=
=
,f(
)=
=
,则f(2014)+f(2013)+…+f(2)+f(1)+f(1)+f(
)+…+f(
)+f(
)= .
| 1 |
| 1+a |
| 1 |
| 1+4 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 | ||
1+
|
| 4 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2013 |
| 1 |
| 2014 |
考点:有理数的混合运算
专题:规律型
分析:由于f(a)=
,f(
)=
=
,则f(a)+f(
)=
+
=1,依此根据加法交换律两两结合,再相加即可求解.
| 1 |
| 1+a |
| 1 |
| a |
| 1 | ||
1+
|
| a |
| 1+a |
| 1 |
| a |
| 1 |
| 1+a |
| a |
| 1+a |
解答:解:∵f(a)=
,f(
)=
=
,
∴f(a)+f(
)=
+
=1,
∴f(2014)+f(2013)+…+f(2)+f(1)+f(1)+f(
)+…+f(
)+f(
)
=[f(2014)+f(
)]+[f(2013)+f(
)]+…+[f(2)+f(
)]+[f(1)+f(1)]
=1×2014
=2014.
故答案为:2014.
| 1 |
| 1+a |
| 1 |
| a |
| 1 | ||
1+
|
| a |
| 1+a |
∴f(a)+f(
| 1 |
| a |
| 1 |
| 1+a |
| a |
| 1+a |
∴f(2014)+f(2013)+…+f(2)+f(1)+f(1)+f(
| 1 |
| 2 |
| 1 |
| 2013 |
| 1 |
| 2014 |
=[f(2014)+f(
| 1 |
| 2014 |
| 1 |
| 2013 |
| 1 |
| 2 |
=1×2014
=2014.
故答案为:2014.
点评:考查了有理数的混合运算,关键是由规定得到f(a)+f(
)=
+
=1.
| 1 |
| a |
| 1 |
| 1+a |
| a |
| 1+a |
练习册系列答案
相关题目