题目内容

5.如图,已知点D为OB上的一点,按下列要求进行作图.
(1)作∠AOB的平分线OC;
(2)在OC上取一点P,使得OP=a;
(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OA上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间存在一定的数量关系,请写出∠OEP与∠ODP的数量关系,并说明理由.

分析 (1)以点O为圆心,以任意长为半径画弧与∠AOB的两边分别相交,再以两交点为圆心,以大于两交点之间的距离的一半为半径画弧,相交于一点,过这一点与O作射线OC即可;
(2)在OC上取一点P,使得OP=a;
(3)以O为圆心,以OD为半径作弧,交OA于E2,连接PE2,作PM⊥OA于M,PN⊥OB于N,根据角平分线上的点到角的两边的距离相等可得PM=PN,利用HL证明△E2PM≌△DPN,得出∠OE2P=∠ODP,再根据平角的定义即可求解.

解答 解:(1)如图,OC即为所求;

(2)如图,OP=a;

(3)∠OEP=∠ODP或∠OEP+∠ODP=180°.
理由是:以O为圆心,以OD为半径作弧,交OA于E2,连接PE2,作PM⊥OA于M,
PN⊥OB于N,则PM=PN.
在△E2PM和△DPN中,
$\left\{\begin{array}{l}{P{E}_{2}=PD}\\{PM=PN}\end{array}\right.$,
∴△E2PM≌△DPN(HL),
∴∠OE2P=∠ODP;
以P为圆心,以PD为半径作弧,交OA于另一点E1,连接PE1
则此点E1也符合条件PD=PE1
∵PE2=PE1=PD,
∴∠PE2E1=∠PE1E2
∵∠OE1P+∠E2E1P=180°,
∵∠OE2P=∠ODP,
∴∠OE1P+∠ODP=180°,
∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°.

点评 本题主要考查了角平分线的作法,作一个角等于已知角,过直线外一点作已知直线的垂线,都是基本作图,需要熟练掌握,另外还考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网