题目内容
设x=3+
| ||
| 2 |
3-
| ||
| 2 |
分析:由题干条件求出x+y和xy的值,然后把x3+y3进行化简成(x+y)和xy的形式,代值计算即可.
解答:解:x+y=
+
=3
x•y=
•
=
=1
∴x3+y3=(x+y)(x2-xy+y2)
=(x+y)[(x2+2xy+y2)-3xy]
=
=
=18,
故答案为18.
3+
| ||
| 2 |
3-
| ||
| 2 |
x•y=
3+
| ||
| 2 |
3-
| ||
| 2 |
| 9-5 |
| 4 |
∴x3+y3=(x+y)(x2-xy+y2)
=(x+y)[(x2+2xy+y2)-3xy]
=
|
=
|
=18,
故答案为18.
点评:本题主要考查立方根的知识点,解答本题的突破口是根据题干条件求出x+y和xy的值,本题的难度不大.
练习册系列答案
相关题目
设x=
,y=
,则x5+x4y+xy4+y5的值为( )
3+
| ||
| 2 |
3-
| ||
| 2 |
| A、47 | B、135 |
| C、141 | D、153 |