题目内容
设x=
,y=
,则x5+x4y+xy4+y5的值为( )
3+
| ||
| 2 |
3-
| ||
| 2 |
| A.47 | B.135 | C.141 | D.153 |
∵x=
,y=
,
∴x+y=3,xy=1
∴x2+y2=(x+y)2-2xy=7,
∴x5+x4y+xy4+y5=(x5+x4y)+(xy4+y5)=x4(x+y)+y4(x+y)=(x4+y4)(x+y)=[(x2+y2)2-2x2y2](x+y)
=(49-2)×3=141.故选C.
3+
| ||
| 2 |
3-
| ||
| 2 |
∴x+y=3,xy=1
∴x2+y2=(x+y)2-2xy=7,
∴x5+x4y+xy4+y5=(x5+x4y)+(xy4+y5)=x4(x+y)+y4(x+y)=(x4+y4)(x+y)=[(x2+y2)2-2x2y2](x+y)
=(49-2)×3=141.故选C.
练习册系列答案
相关题目
设x=
,y=
,则x5+x4y+xy4+y5的值为( )
3+
| ||
| 2 |
3-
| ||
| 2 |
| A、47 | B、135 |
| C、141 | D、153 |