题目内容
9.相等的边是:AB与DC,AC与DB,BC与CB;
相等的角是:∠A与∠D,∠ABC与∠DCB,∠ACB与∠DBC.
分析 直接根据全等三角形的性质进行判断.
解答 解:∵△ABC≌△DCB,
∴AB=DC,AC=DB,BC=CB,∠A=∠D,∠ABC=∠DCB,∠ACB=∠DBC,
即AB与DC,AC与DB,BC与CB是对应边;∠A与∠D,∠ABC与∠DCB,∠ACB与∠DBC是对应角.
故答案为AB与DC,AC与DB,BC与CB;∠A与∠D,∠ABC与∠DCB,∠ACB与∠DBC.
点评 本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.
练习册系列答案
相关题目
19.已知关于x的一元二次方程(x-2)(x-3)=p2,p为实数,判断下列说法:
①方程的两个根分别为x1=2,x2=3;
②方程一定有两个不相等的实数根;
③方程的实数根所在的范围是x≤2或x≥3
其中正确的是( )
①方程的两个根分别为x1=2,x2=3;
②方程一定有两个不相等的实数根;
③方程的实数根所在的范围是x≤2或x≥3
其中正确的是( )
| A. | 只有② | B. | 只有③ | C. | ②③ | D. | ①②③ |
19.下列运算中正确的是( )
| A. | 11+[(-13)+7]=17 | B. | (-2.5)+[5+(-2.5)]=5 | C. | [3$\frac{1}{2}$+(-3$\frac{1}{2}$)]+(-2)=-2 | D. | 3.14+[(-4)+3.14]=-4 |