题目内容

14.几何证明.
如图,已知四边形ABCD的两条对角线AC和BD互相垂直且相等,顺次连接该四边形四边的中点E、F、G、H.试判断四边形EFGH的形状并证明.

分析 四边形EFGH的形状是正方形,先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.

解答 解:四边形EFGH的形状是正方形,
理由如下:
在△ABC中,F、G分别是AB、BC的中点,
故可得:FG=$\frac{1}{2}$AC,同理EH=$\frac{1}{2}$AC,GH=$\frac{1}{2}$BD,EF=$\frac{1}{2}$BD,
在四边形ABCD中,AC=BD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
在△ABD中,E、H分别是AD、CD的中点,
则EH∥AC,
同理GH∥BD,
又∵AC⊥BD,
∴EH⊥HG,
∴四边形EFGH是正方形.

点评 此题考查了正方形的判定,解题的关键是了解既是矩形又是菱形的四边形是正方形,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网