题目内容
某镇2012年投入教育经费2000万元,为了发展教育事业,该镇每年教育经费的年增长率均为x,预计到2014年共投入9500万元,则下列方程正确的是( )
A.
B.
C.
D.
用科学记数法表示:0.0002015=_______________.
如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围.
设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y2>y1 D. y3>y1>y2
某商厦今年一月份销售额为60万元,二月份由于经营不善,销售额下降10%,以后改进管理,大大激发全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)
如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:
(1)△ACE≌△BCD;(2).
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)本题要判定,已知和都是等腰直角三角形,,则,,,又因为两角有一个公共的角,所以,根据得出.
(2)由(1)的论证结果得出,,.
试题解析:
(1)∵,
∴
∴.
∵,,
(2)∵是等腰直角三角形,
∵,
∴,
由(1)知AE=DB,
考点:(1)勾股定理;(2)全等三角形的判定与性质;(3)等腰直角三角形.
【题型】解答题【结束】20
已知一次函数y=2x+4
(1)在如图所示的平面直角坐标系中,画出函数的图象;
(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;
(3)在(2)的条件下,求出△AOB的面积;
(4)利用图象直接写出:当y<0时,x的取值范围.
在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 ______ y2.(填“>”“<”或“=”)
【答案】<
【解析】试题解析:∵一次函数y=2x+1中k=2>0,
∴y随x的增大而增大,
∵x1<x2,
∴y1<y2.
考点:一次函数图象上点的坐标特征.
【题型】填空题【结束】13
如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.
关于x的方程有两个不相等的实数根.
(1)求实数k的取值范围;
(2)设方程的两个实数根分别为、,存不存在这样的实数k,使得?若存在,求出这样的k值;若不存在,说明理由.
解方程:(2x﹣1)2﹣9=0.(因式分解法)