题目内容
9.| A. | $\sqrt{2}$ | B. | 2 | C. | $\frac{\sqrt{2}}{2}$π | D. | $\frac{\sqrt{2}}{3}$π |
分析 如图,延长AD到M,使得DM=AD,连接CM,则点Q运动轨迹是线段CM.只要证明△ABP≌△PNQ,CN=QN即可解决问题.
解答 解:如图,延长AD到M,使得DM=AD,连接CM,则点Q运动轨迹是线段CM.![]()
作QN⊥BC于N,
∵PA=PQ,∠APQ=90°,
∴∠APB+∠QPN=90°,∠QPN+∠PQN=90°,
∴∠APB=∠PQN,
在△ABP和△PNQ中,
$\left\{\begin{array}{l}{∠B=∠PNQ=90°}\\{∠APB=∠PQN}\\{AP=PQ}\end{array}\right.$,
∴△ABP≌△PNQ,
∴AB=PN=BC,PB=NQ,
∴PB=CN=QN,
∴∠QCN=45°,
∴点Q在线段CM上,点Q的运动轨迹是线段CM,
CM=$\sqrt{2}$CD=$\sqrt{2}$.
故选A.
点评 本题考查正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、轨迹等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.
练习册系列答案
相关题目
20.下列各数中,小于-3的是( )
| A. | 2 | B. | 0 | C. | -2 | D. | -4 |