题目内容

如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.

(1)求过A、B、C三点的抛物线的解析式;

(2)设点M是x轴上的动点,试问:在平面直角坐标系中,是否存在点N,使得以点A,B,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,说明理由;

(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,选择一种情况加以说明;若不存在,说明理由.

(1)y=﹣x2+x+2(2)(0,﹣2),(,2),(﹣,2),(﹣2.5,2)(3)(, ) 【解析】试题分析:(1)设抛物线的解析式为y=ax2+bx+c.将点A、B、C的坐标代入得到关于a、b、c的方程,从而可求得a、b、c的值; (2)分为AB为菱形的边和AB为菱形的对角共可画出4种不同的图形,然后依据菱形对边平行,对角线互相平分的性质确定出点N的坐标即可; (3)如图...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网