ÌâÄ¿ÄÚÈÝ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãÓëµãÖ®¼ä´æÔÚÒ»Öֱ任T£¬Ôڱ任TµÄ×÷ÓÃÏ£¬µãP£¨x£¬y£©±»±äΪµãP¡ä£¨2x-y£¬3x-2y+3£©£®ÀýÈ磺µ±Pµã×ø±êΪ£¨1£¬0£©Ê±£¬Ôڱ任TµÄ×÷ÓÃϱäΪµãP¡ä£¨2¡Á1-0£¬3¡Á1-2¡Á0+3£©£¬¼´ÎªP¡ä£¨2£¬6£©£®
£¨1£©ÈôµãMÔڱ任TµÄ×÷ÓÃϱäΪM¡ä£¨1£¬-1£©£¬ÇóµãMµÄ×ø±ê£»
£¨2£©ÈôµãN£¨$\frac{m}{4}$£¬m£©Ôڱ任TµÄ×÷ÓÃϱäΪµÄ¶ÔÓ¦µãN¡äÔÚµÚ¶þÏóÏÞ£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©ÉèÆ½ÃæÖ±½Ç×ø±êϵÉϵÄÈÎÒâÒ»µãQ£¨x£¬y£©Ôڱ任TµÄ×÷ÓÃ϶ÔÓ¦µãΪQ¡ä£¬ÎÊÊÇ·ñ´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£¿Èô´æÔÚ£¬Çó³ök¡¢bµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ê×ÏÈÉèµãMµÄ×ø±êÊÇ£¨x£¬y£©£¬ÔòÔڱ任TµÄ×÷ÓÃÏ£¬µãM£¨x£¬y£©±»±äΪµãM¡ä£¨2x-y£¬3x-2y+3£©£¬È»ºó¸ù¾ÝµãM¡äµÄ×ø±êÊÇ£¨1£¬-1£©£¬Áгö¶þÔªÒ»´Î·½³Ì×飬Çó³öx¡¢yµÄÖµ£¬¼´¿ÉÇó³öµãMµÄ×ø±ê£®
£¨2£©Ê×ÏÈÇó³öµãN£¨$\frac{m}{4}$£¬m£©Ôڱ任TµÄ×÷ÓÃϵĵãN¡äµÄ×ø±êÊǶàÉÙ£»È»ºó¸ù¾ÝµãN¡äÔÚµÚ¶þÏóÏÞ£¬¿ÉµÃµãN¡äµÄºá×ø±êСÓÚ0£¬×Ý×ø±ê´óÓÚ0£¬Çó³öʵÊýmµÄȡֵ·¶Î§¼´¿É£®
£¨3£©¢Ùµ±x=yʱ£¬²»´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£»¢Úµ±x¡Ùyʱ£¬´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£¬¸ù¾ÝµãQºÍQ¡ä¶¼ÔÚÒ»´Îº¯Êýy=kx+bµÄͼÏóÉÏ£¬Áгö¶þÔªÒ»´Î·½³Ì×飬Çó³ök¡¢bµÄÖµ¸÷ÊǶàÉÙ¼´¿É£®

½â´ð ½â£º£¨1£©ÉèµãMµÄ×ø±êÊÇ£¨x£¬y£©£¬
ÔòÔڱ任TµÄ×÷ÓÃÏ£¬µãM£¨x£¬y£©±»±äΪµãM¡ä£¨2x-y£¬3x-2y+3£©£¬
¡à$\left\{\begin{array}{l}{2x-y=1}\\{3x-2y+3=-1}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{x=6}\\{y=11}\end{array}\right.$
¡àµãMµÄ×ø±êÊÇ£¨6£¬11£©£®

£¨2£©2x-y=2¡Á$\frac{m}{4}$-m=$\frac{m}{2}-m=-\frac{m}{2}$
3x-2y+3=3¡Á$\frac{m}{4}$-2m+3=$\frac{3}{4}m$-2m+3=-$\frac{5}{4}m+3$
¡ßµãN¡äÔÚµÚ¶þÏóÏÞ£¬
¡à$\left\{\begin{array}{l}{-\frac{m}{2}£¼0}\\{-\frac{5}{4}m+3£¾0}\end{array}\right.$
½âµÃ0£¼m£¼2.4£¬
¼´ÊµÊýmµÄȡֵ·¶Î§ÊÇ0£¼m£¼2.4£®

£¨3£©¢Ùµ±x=yʱ£¬²»´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£®
¢Úµ±x¡Ùyʱ£¬´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£®
¢Ùµ±x=yʱ£¬
¡ßµãQ£¨x£¬x£©Ôڱ任TµÄ×÷ÓÃ϶ÔÓ¦µãΪQ¡ä£¨x£¬x+3£©£¬
¡à²»´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£®

¢Úµ±x¡Ùyʱ£¬µãQ£¨x£¬y£©Ôڱ任TµÄ×÷ÓÃ϶ÔÓ¦µãΪQ¡ä£¨2x-y£¬3x-2y+3£©£¬
¡ßµãQºÍQ¡ä¶¼ÔÚÒ»´Îº¯Êýy=kx+bµÄͼÏóÉÏ£¬
¡à$\left\{\begin{array}{l}{y=kx+b}\\{3x-2y+3=k£¨2x-y£©+b}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{k=3-\frac{3}{y-x}}\\{b=y-3x+\frac{3x}{y-x}}\end{array}\right.$
¡àµ±x¡Ùyʱ£¬´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£¬´Ëʱk=3-$\frac{3}{y-x}$£¬b=y-3x+$\frac{3x}{y-x}$£®

µãÆÀ £¨1£©´ËÌâÖ÷Òª¿¼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁË·ÖÎöÍÆÀíÄÜÁ¦£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Ó㬿¼²éÁË´ÓÒÑÖªº¯ÊýͼÏóÖлñÈ¡ÐÅÏ¢£¬²¢ÄÜÀûÓûñÈ¡µÄÐÅÏ¢½â´ðÏàÓ¦µÄÎÊÌâµÄÄÜÁ¦£®
£¨2£©´ËÌ⻹¿¼²éÁ˸÷¸öÏóÏ޵ĵãµÄÌØÕ÷£¬ÒÔ¼°¼¸ºÎ±ä»»µÄ֪ʶ£¬ÒªÊìÁ·ÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø