题目内容
(2015秋•东海县期末)抛物线y=x2﹣8x+c的顶点在x轴上,则c的值为 .
如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( )
A.50° B.80° C.100° D.130°
(2015秋•惠山区期末)如图,扇形OMN与正方形ABCD,半径OM与边AB重合,弧MN的长等于AB的长,已知AB=2,扇形OMN沿着正方形ABCD逆时针滚动到点O首次与正方形的某顶点重合时停止,则点O经过的路径长 .
(2015秋•东海县期末)如图,直线y=﹣x+6分别交x轴、y轴于A、B两点,抛物线y=﹣x2+8,与y轴交于点D,点P是抛物线在第一象限部分上的一动点,过点P作PC⊥x轴于点C.
(1)点A的坐标为 ,点D的坐标为 ;
(2)探究发现:
①假设P与点D重合,则PB+PC= ;(直接填写答案)
②试判断:对于任意一点P,PB+PC的值是否为定值?并说明理由;
(3)试判断△PAB的面积是否存在最大值?若存在,求出最大值,并求出此时点P的坐标;若不存在,说明理由.
(2015秋•东海县期末)已知==,且x+y﹣z=6,求x、y、z的值.
(2015秋•东海县期末)若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′的度数为 .
(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为( )
A.12 B.15 C.18 D.21
(2013•宜昌)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( )
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
(2015秋•佛山期末)计算:cos230°+2sin60°﹣tan45°.