题目内容
已知点和是抛物线上的两点,如果,那么______.(填“>”、“=”或“<”)
如图,将一个大三角形剪成一个小三角形及一个梯形. 若梯形上、下底的长分别为6、14,两腰长为12、16,则剪出的小三角形是( )
A. A B. B C. C D. D
已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是__________,方差是____________
如图,抛物线过点, . 为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.
(1)求直线AB的解析式和抛物线的解析式;
(2)如果点P是MN的中点,那么求此时点N的坐标;
(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.
如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(-2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是_____________.
已知2x=3y(y≠0),那么=_____.
问题提出:若一个四边形的两组对边乘积之和等于它的两条对角线的乘积,则称这个四边形为巧妙四边形.
初步思考:(1)写出你所知道的四边形是巧妙四边形的两种图形的名称: , .
(2)小敏对巧妙四边形进行了研究,发现圆的内接四边形一定是巧妙四边形.
如图①,四边形ABCD是⊙O的内接四边形.
求证:AB·CD+BC·AD=AC·BD.
小敏在解答此题时,利用了“相似三角形”进行证明,她的方法如下:
在BD上取点M,使∠MCB=∠DCA.
(请你在下面的空白处完成小敏的证明过程.)
推广运用:如图②,在四边形ABCD中,∠A=∠C=90°,AD=,AB=,CD=2.求AC的长.
一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1·x2的值是____.
如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°,求∠APB的度数.