题目内容

9.如图,在△ABC中,∠BAC=90°,∠B=56°,AD⊥BC,DE∥CA,求∠ADE的度数.

分析 根据平行线的性质推知△AED是直角三角形;在直角△ABD中,利用“直角三角形的两个锐角互余的性质”求得∠BAD=34°;然后在直角△AED中,利用“直角三角形的两个锐角互余的性质”求得∠ADE的度数.

解答 解:∵∠BAC=90°,DE∥AC(已知)
∴∠DEA=180°-∠BAC=90°(两直线平行,同旁内角互补).
∵AD⊥BC,∠B=56°,
∴∠BAD=34°,
在△ADE中,∵DE⊥AB,
∴∠ADE=56°.

点评 本题考查了三角形内角和定理以及平行线的性质,直角三角形的性质.直角三角形的两个锐角互余,此题难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网