题目内容

17.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为(  )
A.4B.$\frac{5}{2}\sqrt{2}$C.4$\sqrt{2}$D.5$\sqrt{2}$

分析 连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.

解答 解:连接AC,交EF于点M,
∵AE丄EF,EF丄FC,
∴∠E=∠F=90°,
∵∠AME=∠CMF,
∴△AEM∽△CFM,
∴$\frac{AE}{CF}$=$\frac{EM}{FM}$,
∵AE=1,EF=FC=3,
∴$\frac{EM}{FM}$=$\frac{1}{3}$,
∴EM=$\frac{3}{4}$,FM=$\frac{9}{4}$,
在Rt△AEM中,AM2=AE2+EM2=1+$\frac{9}{16}$=$\frac{25}{16}$,解得AM=$\frac{5}{4}$,
在Rt△FCM中,CM2=CF2+FM2=9+$\frac{81}{16}$=$\frac{225}{16}$,解得CM=$\frac{15}{4}$,
∴AC=AM+CM=5,
在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
∴AB=$\frac{5\sqrt{2}}{2}$,即正方形的边长为$\frac{5\sqrt{2}}{2}$.
故选B.

点评 本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网