题目内容
某种蔬菜按品质分成三个等级销售,销售情况如下表:
等级
单价(元/千克)
销售量(千克)
一等
5.0
20
二等
4.5
40
三等
4.0
则售出蔬菜的平均单价为 元/千克.
某排球队12名队员的年龄如下表所示:
年龄/岁
19
21
22
23
人数/人
1
5
3
2
则该队队员年龄的中位数是 .
已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=.
(1)求k的值和边AC的长;
(2)求点B的坐标.
(本题满分10分)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.
(1)若∠AOB=60º,OM=4,OQ=1,求证:CN⊥OB.
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.
(本题满分8分)已知:如图,AB∥CD,E是AB的中点,CE=DE.
求证:(1)∠AEC=∠BED;
(2)AC=BD.
分解因式:8-2x2= .
方程2x-1=3x+2的解为( )
A.x=1 B.x=-1 C.x=3 D.x=-3
埃是表示极小长度的单位名称,是为纪念瑞典物理学家埃基特朗而定的。1埃等于一亿分之一厘米,请用科学计数法表示1埃等于 厘米
已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果EF=2OG,求点G的坐标.
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.