题目内容

(1)三角形内角和等于
 

(2)请证明以上命题.
考点:三角形内角和定理,平行线的性质
专题:证明题
分析:(1)直接根据三角形内角和定理得出结论即可;
(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.
解答:解:(1)三角形内角和等于180°.
故答案为:180°;

(2)已知:如图所示的△ABC,
求证:∠A+∠B+∠C=180°.
证明:过点C作CF∥AB,
∵CF∥AB,
∴∠2=∠A,∠B+∠BCF=180°,
∵∠1+∠2=∠BCF,
∴∠B+∠1+∠2=180°,
∴∠B+∠1+∠A=180°,即三角形内角和等于180°.
点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网