ÌâÄ¿ÄÚÈÝ
19£®ÓÉ·½²îµÄ¼ÆË㹫ʽs2=$\frac{1}{n}$[£¨x1-$\overline{x}$£©2+£¨x2-$\overline{x}$£©2+¡+£¨xn-$\overline{x}$£©2]£¬ÈÝÒ׵óö·½²îµÄÈçÏÂÐÔÖÊ£ºÐÔÖÊ1£ºÈκÎÒ»×éʵÊýµÄ·½²î¶¼ÊǷǸºÊµÊý£®
ÐÔÖÊ2£ºÈôÒ»×éʵÊýÊý¾ÝµÄ·½²îΪÁ㣬Ôò¸Ã×éÊý¾Ý¾ùÏàµÈ£¬ÇÒ¶¼µÈÓÚ¸Ã×éÊý¾ÝµÄƽ¾ùÊý£»
ÇëÔËÓÃÕâÁ½¸öÐÔÖʺͷ½²î¼ÆË㹫ʽ£¬½â¾öÏÂÃæµÄÎÊÌ⣺
ÒÑÖªx+y=2£¬xy-z2=1£¬Çóx+y+zµÄÖµ£®
·ÖÎö ÓÉÌâÒ⣬Ê×ÏÈËã³öÊýx¡¢yµÄƽ¾ùÊý£¬Çóx¡¢yµÄ·½²î£¬±äÐδúÈëÓú¬zµÄ´úÊýʽ±íʾ³ö·½²î£¬Óɷdz£µÄÐÔÖÊ2£¬µÃµ½zµÄÖµÊÇ0£¬È»ºó¼ÆËãx+y+z£®
½â´ð ½â£ºÓÐx+y=2£¬µÃx¡¢yµÄƽ¾ùÊýΪ$\frac{x+y}{2}$=1£¬ÓÉxy=z2+1
ËùÒÔx¡¢yµÄ·½²îΪs2=$\frac{1}{2}$[£¨x-1£©2+£¨y-1£©2]
=$\frac{1}{2}$[x2-2x+1+y2-2y+1]
=$\frac{1}{2}$[x2+2xy+y2-2xy-2£¨x+y£©+2]
=$\frac{1}{2}$[£¨x+y£©2-2xy-2£¨x+y£©+2]
=$\frac{1}{2}$[4-2z2-2-4+2]
=$\frac{1}{2}$[-2z2]
=-z2
¡ßs2¡Ý0
¡à-z2¡Ý0¼´z2¡Ü0
¡àz=0
¡àx+y+z=2+0=2£®
µãÆÀ ±¾Ì⿼²éÁË·½²îµÄÐÔÖÊ£®½â¾ö±¾ÌâµÄ¹Ø¼üÊǰÑÇóÖµÎÊÌâת»¯Îª·½²îÎÊÌ⣬ÀûÓ÷½²îµÄÐÔÖÊÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿