题目内容
对于正数x,f(x)=| x |
| x+1 |
f(3)=
| 3 |
| 1+3 |
| 3 |
| 4 |
| 1 |
| 3 |
| ||
1+
|
| 1 |
| 4 |
计算:
f(
| 1 |
| 2008 |
| 1 |
| 2007 |
| 1 |
| 2006 |
| 1 |
| 3 |
| 1 |
| 2 |
分析:首先求得f(x)+f(
)=
+
=1,即可将f(
)+f(
)+f(
)+…f(
)+f(
)+f(1)+f(1)+f(2)+f(3)+…+f(2006)+f(2007)+f(2008)变为f(
)+f(2008)+f(
)+f(2007)+f(
)+f(2006)+…+f(
)+f(2)+f(1)+f(1),则相当于2008个1相加,则可求得答案.
| 1 |
| x |
| x |
| x+1 |
| 1 |
| x+1 |
| 1 |
| 2008 |
| 1 |
| 2007 |
| 1 |
| 2006 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2008 |
| 1 |
| 2007 |
| 1 |
| 2006 |
| 1 |
| 2 |
解答:解:∵f(x)=
,f(
)=
=
,
∴f(x)+f(
)=
+
=1,
∴f(
)+f(
)+f(
)+…f(
)+f(
)+f(1)+f(1)+f(2)+f(3)+…+f(2006)+f(2007)+f(2008)=f(
)+f(2008)+f(
)+f(2007)+f(
)+f(2006)+…+f(
)+f(2)+f(1)+f(1)=1+1+…+1+1=2008.
故答案为:2008.
| x |
| x+1 |
| 1 |
| x |
| ||
|
| 1 |
| x+1 |
∴f(x)+f(
| 1 |
| x |
| x |
| x+1 |
| 1 |
| x+1 |
∴f(
| 1 |
| 2008 |
| 1 |
| 2007 |
| 1 |
| 2006 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2008 |
| 1 |
| 2007 |
| 1 |
| 2006 |
| 1 |
| 2 |
故答案为:2008.
点评:此题考查了分式的加减运算.此题难度适中,解题的关键是找到规律:f(x)+f(
)=
+
=1,然后利用规律求解.
| 1 |
| x |
| x |
| x+1 |
| 1 |
| x+1 |
练习册系列答案
相关题目