题目内容

14.若二次函数y=ax2+bx+c(a≠0)的图象上有两点,坐标分别为(x1,y1),(x2,y2),其中y1y2<0,则下列判断中正确的是(  )
A.a<0
B.b2-4ac的值可能为0
C.方程ax2+bx+c=0必有一根x0满足x1<x0<x2
D.y1<y2

分析 由y1y2<0可判断抛物线与x轴有两个交点,所以B选项错误;不能确定抛物线开口方向,所以A选项错误;也不能确定y1与y2的大小,所以D选项错误;由于抛物线与x轴的有一个交点在(x1,0)和(x2,0)之间,则可判断方程ax2+bx+c=0必有一根x0满足x1<x0<x2,则可判断C选项正确.

解答 解:∵y1y2<0,
∴抛物线经过x轴的上方和下方,
∴抛物线与x轴有两个交点,
且有一个交点在(x1,0)和(x2,0)之间,
∴方程ax2+bx+c=0必有一根x0满足x1<x0<x2
故选C.

点评 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.解题的关键是利用对应值确定对称轴,再利用二次函数的性质求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网