题目内容

如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.

证明见解析. 【解析】试题分析:先根据角平分线的性质可证得:MA=MB, 再根据HL定理判定Rt△MAO≌Rt△MBO,然后可证得:OA=OB, 根据等边对等角可证得: ∠OAB=∠OBA. 试题解析:∵OM平分∠POQ,MA⊥OP,MB⊥OQ, ∴AM=BM, 在Rt△MAO和Rt△MAO中, , ∴Rt△AOM≌Rt△BOM(HL), ∴OA=O...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网