题目内容
若抛物线y=(x﹣2m)2+3m﹣1(m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m的取值范围是( )
A.m<2 B.m>2 C.m
D.m![]()
A
【解析】
试题分析:根据二次函数y=(x﹣2m)2+3m﹣1(m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,则(2m﹣2m)2+3m﹣1<2m+1,求出k的取值范围即可.
【解析】
∵抛物线y=(x﹣2m)2+3m﹣1(m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,
∴当x=2m时,y<2m+1,所以把x=2m代入解析式中得:(2m﹣2m)2+3m﹣1<2m+1
∴m<2,
所以m的取值范围是m<2.
故选A.
练习册系列答案
相关题目
抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣6 | 0 | 4 | 6 | 6 | … |
给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个