题目内容
点A( 1-a, 5 ),B( 3 , b )关于y轴对称,则a+b= 。
计算: ﹣|2﹣|=_____
如图,在直角坐标系平面内,函数y=(x>0,m是常数)的图象经过A(1,4)、B(a,b),其中a>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,AB,DC,CB.
(1)求反比例函数解析式;
(2)当△ABD的面积为S,试用a的代数式表示求S.
(3)当△ABD的面积为2时,判断四边形ABCD的形状,并说明理由.
如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则∠2等于( )
A. 30° B. 40° C. 50° D. 60°
如图,四边形ABCD各顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).
(1)确定这个四边形的面积,你是怎样做的?
(2)如果把四边形ABCD各顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?
将一张坐标纸折叠一次,使得点(3,0)与(-3,0)重合,则点(,0)与__________重合.
一个平行四边形的三个顶点的坐标分别是(0,0)、(2,0)、(1,2),第四个顶点在x轴下方,则第四个顶点的坐标为( )
A. (-1,-2) B. (1,-2) C. (3,2) D. (-1,2)
比较大小:3_____(填写“<”或“>”)
如图,在平面直角坐标系中,点D的坐标是(﹣3,1),点A的坐标是(4,3).
(1)点B和点C的坐标分别是______、______.
(2)将△ABC平移后使点C与点D重合,点A、B与点E、F重合,画出△DEF.并直接写出E、F的坐标.
(3)若AB上的点M坐标为(x,y),则平移后的对应点M′的坐标为______.