题目内容
| 5 |
考点:圆周角定理,勾股定理
专题:
分析:连结AO并延长,交BC于E.先由圆周角定理得出∠BAD=∠BCD=90°,再证明AO是BC的垂直平分线,由cos∠BAO=
=
=
,求出AE=
.再根据勾股定理求得BE=CE=
,于是BC=2BE=
.再由勾股定理求得CD=
=
,AD=
=2,然后根据四边形ABCD的面积=
AB•AD+
BC•CD,代入数据即可求解.
| ||
| AO |
| 2 | ||
|
| AE |
| AB |
| 8 | ||
|
| 4 | ||
|
| 8 | ||
|
| BD2-CD2 |
| 6 | ||
|
| BD2-AB2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:如图,连结AO并延长,交BC于E.
∵BD为圆O的直径,
∴∠BAD=∠BCD=90°,
∵AB=AC=4,BO=CO=R,
∴AO是BC的垂直平分线,
∵AO=BO=CO=DO=
,
∴cos∠BAO=
=
=
,
∴AE=
.
由勾股定理解得BE=CE=
,
∴BC=2BE=
.
由勾股定理解得CD=
=
,AD=
=2,
∴四边形ABCD的面积=
AB•AD+
BC•CD=
×4×2+
×
×
=4+
=8.8.
∵BD为圆O的直径,
∴∠BAD=∠BCD=90°,
∴AO是BC的垂直平分线,
∵AO=BO=CO=DO=
| 5 |
∴cos∠BAO=
| ||
| AO |
| 2 | ||
|
| AE |
| AB |
∴AE=
| 8 | ||
|
由勾股定理解得BE=CE=
| 4 | ||
|
∴BC=2BE=
| 8 | ||
|
由勾股定理解得CD=
| BD2-CD2 |
| 6 | ||
|
| BD2-AB2 |
∴四边形ABCD的面积=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 8 | ||
|
| 6 | ||
|
| 24 |
| 5 |
点评:本题考查了圆周角定理,勾股定理,难度适中.准确作出辅助线求出BC、CD、AD的长是解题的关键.
练习册系列答案
相关题目