题目内容
| A、AE=AC |
| B、∠B=∠D |
| C、∠BAC=∠DAE |
| D、∠C=∠E |
考点:全等三角形的判定
专题:
分析:根据∠1=∠2可利用等式的性质得到∠BAC=∠DAE,然后再根据所给的条件利用全等三角形的判定定理进行分析即可.
解答:解:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,
∴∠BAC=∠DAE,
A、添加AE=AC,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;
B、添加∠B=∠D,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;
C、添加∠BAC=∠DAE,不能判定△ABC≌△ADE,故此选项符合题意;
D、添加∠C=∠E,可利用AAS定理判定△ABC≌△ADE,故此选项不合题意;
故选:C.
∴∠1+∠DAC=∠2+∠DAC,
∴∠BAC=∠DAE,
A、添加AE=AC,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;
B、添加∠B=∠D,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;
C、添加∠BAC=∠DAE,不能判定△ABC≌△ADE,故此选项符合题意;
D、添加∠C=∠E,可利用AAS定理判定△ABC≌△ADE,故此选项不合题意;
故选:C.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目
数轴上到原点的距离等于1的点所表示的数是( )
| A、±1 | B、0 | C、1 | D、-1 |
| A、 |
| B、 |
| C、 |
| D、 |
| 1 |
| x |
| A、该函数的图象是中心对称图形 |
| B、y的值不可能为1 |
| C、在每个象限内,y的值随x值的增大而减小 |
| D、当x时,该函数在y时取得最小值2 |