题目内容

14.如图1,点E为矩形ABCD的边AD上一点,点P、点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系如图2(曲线OM为抛物线的一部分),则下列结论:
①AB=6cm;
②当0<t≤10时,y=$\frac{3}{10}$t2
③NH所在直线的解析式为y=-5t+90;
④sin∠PBQ=$\frac{1}{2}$时,t=13秒.
其中错误的结论个数是(  )
A.0B.1C.2D.3

分析 根据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.

解答 解:①根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/s,
∴BC=BE=10cm,S△BCE=$\frac{1}{2}$BC•AB=30,
∴AB=6cm,故①正确;
①如图1,过点P作PF⊥BC于点F,
根据面积不变时△BPQ的面积为10,可得AB=4,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=$\frac{AB}{BE}=\frac{4}{5}$,
∴PF=PBsin∠PBF=$\frac{4}{5}$t,
∴当0<t≤5时,y=$\frac{1}{2}$BQ•PF=$\frac{1}{2}$t•$\frac{4}{5}$t=$\frac{2}{5}$t2(故②正确);
③根据10-12秒面积不变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=18,
故点H的坐标为(18,0),
设直线NH的解析式为y=kx+b,
将点H(18,0),点N(12,30)代入可得:
$\left\{\begin{array}{l}{18k+b=0}\\{12k+b=30}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-5}\\{b=90}\end{array}\right.$.
故直线NH的解析式为:y=-5t+90,故③正确;
④如图2所示,sin∠PBQ=$\frac{1}{2}$时,∠PBQ=30°,
tan∠PBQ=$\frac{PQ}{BC}$=$\frac{18-t}{10}$=$\frac{\sqrt{3}}{3}$,
解得t=$\frac{54-10\sqrt{3}}{3}$,故④错误;
综上所述,错误的只有④,
故选:B.

点评 本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网