题目内容
12.求不等式组:$\left\{\begin{array}{l}5x<3x+2\\ 3x-3≤2(2x-1).\end{array}\right.$的整数解.分析 线求出每个不等式的解集,再求出不等式组的解集即可.
解答 解:$\left\{\begin{array}{l}{5x<3x+2①}\\{3x-3≤2(2x-1)②}\end{array}\right.$
∵解不等式①得:x<1,
解不等式②得:x≥-1,
∴不等式组的解集为-1≤x<1,
∴不等式组的整数解为-1,0.
点评 本题考查了解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.
练习册系列答案
相关题目
20.不等式2x+3<5的解集在数轴上表示为( )
| A. | B. | C. | D. |
1.若分式$\frac{3x}{x-1}$有意义,则x应满足( )
| A. | x=0 | B. | x≠0 | C. | x≠1 | D. | x=1 |