题目内容

2.如图,线段AB上有一任意点C,点M是线段AC的中点,点N是线段BC的中点,当AB=6cm时,
(1)求线段MN的长.
(2)当C在AB延长线上时,其他条件不变,求线段MN的长.

分析 (1)由于点M是AC中点,所以MC=$\frac{1}{2}$AC,由于点N是BC中点,则CN=$\frac{1}{2}$BC,而MN=MC+CN=$\frac{1}{2}$(AC+BC)=$\frac{1}{2}$AB,从而可以求出MN的长度;
(2)当C在AB延长线上时,由于点M是AC中点,所以MC=$\frac{1}{2}$AC,由于点N是BC中点,则CN=$\frac{1}{2}$BC,而MN=MC-CN=$\frac{1}{2}$(AC-BC)=$\frac{1}{2}$AB,从而可以求出MN的长度.

解答 解:(1)∵点M是AC中点,点N是BC中点,
∴MC=$\frac{1}{2}$AC,CN=$\frac{1}{2}$BC,
∴MN=MC+CN=$\frac{1}{2}$(AC+BC)=$\frac{1}{2}$AB=$\frac{1}{2}×6=3$(cm);
(2)当C在AB延长线上时,如图:

∵点M是AC中点,点N是BC中点,
∴MC=$\frac{1}{2}$AC,CN=$\frac{1}{2}$BC,
∴MN=MC-CN=$\frac{1}{2}$(AC-BC)=$\frac{1}{2}$AB=$\frac{1}{2}×6=3$(cm).

点评 本题考查了两点间的距离.不管点C在哪个位置,MC始终等于AC的一半,CN始终等于BC的一半,而MN等于MC加上(或减去)CN等于AB的一半,所以不管C点在哪个位置MN始终等于AB的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网