题目内容
已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为( )
A. 45° B. 35° C. 25° D. 20°
列方程解应用题:
老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少。
小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树。他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约_______千米。
然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米。小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:
考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值。
如图,△ABC中,点D、E在边BC上,AD平分∠BAC,AE⊥BC,∠B=35°,∠C=65°,则∠DAE的度数是( )
A. 25° B. 10° C. 15° D. 35°
在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出1个小球,记下数字,前后两次的数字分别记为x,y,并以此确定点P(x,y),那么点P在抛物线y=﹣x2+3x上的概率为_____.
如图,CD是⊙O的直径,弦AB⊥CD,垂足为M,若CM=8,DM=12,则AB等于( )
A. 4 B. 8 C. 8 D. 4
如图1,在平面直角坐标系中,开口向上的抛物线与轴交于两点, 为抛物线的顶点, 为坐标原点,过点作交抛物线于点. 若的长分别是方程的两根,且
(1)求抛物线对应的二次函数解析式和点的坐标。
(2)若点M为x轴正半轴上一个动点,N为线段AC上的一个动点,连接MN、CM,是否存在这样的点M,使△AMN为直角三角形和△CMN为等腰三角形同时成立,如果存在,请求出所有符合条件的点M的坐标,如果不存在,请说明理由。
(3如图2,过点任作直线交线段于点求到直线的距离分别为,请直接写出的最大值.
图1 图2
(1)解不等式组: ; (2)解方程:
下列图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
在函数中 ,自变量的取值范围是__________.