题目内容

如图,在□ABCD中,AB=8,AD=6,∠DAB=30°,点E、F在AC上,且AE=EF=FC,则△BEF的面积为(  )

A.8

B.4

C.6

D.12

B

【解析】从D出发向AB做垂线,此垂线即为平行四边形的高,∠DAB=30°,所以平行四边形的高h=AD×sin30=AD/2=3平行四边形面积S=AB×h=8×3=24,AC把平行四边形等分为二。三角形ABC的面积,S'=S/2=12。三角形ABE、EBF、FBC的高相同(从B向AC做垂线,该垂线为3个三角形的共同的高),同时AE=EF=FC,因此三角形ABE、EBF、FBC把三角形ABC三等分,所以三角形BEF的面积,S''=S'/3=12/3=4。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网