题目内容
如图,直线AB//CD,直线EF分别交直线AB、CD于点E、F,EG平分∠AEF交CD于点G,若∠1=36°, 则∠2的大小是( )
A.68° B.70° C.71° D.72°
阅读材料:
如图,在平面直角坐标系中,O为坐标原点,对于任意两点A (,),,由勾股定理可得:,我们把 叫做A、B两点之间的距离,记作.
例题:在平面直角坐标系中,O为坐标原点,设点P(x,0).
A(0,2),B (3,-2),则AB= .;PA = .;
解:由定义有;.
表示的几何意义是 .;表示的几何意义是 ..
解:因为,所以表示的几何意义是点到点的距
离;同理可得,表示的几何意义是点分别到点(0,1)和点(2,3)的距离和.
根据以上阅读材料,解决下列问题:
(1)如图,已知直线与反比例函数(>0)的图像交于两点,
则点A、B的坐标分别为A( , ),B( , ),AB= .
(2)在(1)的条件下,设点,则表示的几何意义
是 ;试求的最小值,以及取得最小值时点P的坐标.
如图,在等腰三角形纸片ABC中,AB=AC,∠A=40°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE的度数是()
A.20° B.30° C.40° D.70°
从-1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为
2015年4月l8日周杰伦“摩天轮2”演唱会在重庆奥体中心如期举行.小王开车从家出发前去观看,预计1个小时能到达,可当天路上较为拥堵,行驶了半个小时,刚好行驶了一半路程,道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小王将车停在轻轨站的车库,然后坐轻轨前往,结果按预计时间到达.下面能反映小王距离奥体中心的距离y (千米)与时间x (小时)的函数关系的大致图象是( )
(本小题满分12分)如图, 在直角坐标系xOy中,一次函数y=-x+m(m为常数)的图像与x轴交于A(-3,0),与y轴交于点C。以直线x=-1为对称轴的抛物线y=a+bx+c(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B.
(1)求一次函数及抛物线的函数表达式。
(2)已知在对称轴上是否存在一点P,使得PBC的周长最小,若存在,请求出点P的坐标.
(3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE。设CD的长为m, △PDE的面积为S。求S与m之间的函数关系式。并说明S是否存在最大值,若存在,请求出最大值:若不存在,请说明理由。
(本小题满分7分)
(本题共2个小题,第1小题3分,第2小题4分,共7分)
(1)4sin60°--2-
(2)先化简,再求值:(2a+b)(2a-b)+,其中a=6,b=-.
已知直线与茹、轴分别相交于B,A两点,抛物线过A,B两点,且对称轴为直线.
(1)求A,B两点的坐标,并求抛物线的解析式;
(2)若点P以1个单位/秒的速度从点B沿轴向点O运动.过点P作轴的平行线交直线AB于点M,交抛物线于点N.设点P运动的时间为,MN的长度为S,求S与之间的函数关系式,并求出当为何值时,S取得最大值?
(3)设抛物线的对称轴CD与直线AB相交于点D,顶点为C.问:在(2)条件不变情况下,是否存在一个值,使四边形CDMN是平行四边形?若存在,求出的值;若不存在,请说明理由.
如图,在等边△ABC中,点D、E分别是边AB、AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是
A.矩形 B.菱形 C.正方形 D.梯形