题目内容


如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为(     )

A.6       B.4       C.3       D.2


C【考点】三角形中位线定理;平行四边形的性质.

【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB的中位线即可得出EF的长度.

【解答】解:∵四边形ABCD是平行四边形,

∴OA=OC,OB=OD,

又∵AC+BD=24厘米,

∴OA+OB=12cm,

∵△OAB的周长是18厘米,

∴AB=6cm,

∵点E,F分别是线段AO,BO的中点,

∴EF是△OAB的中位线,

∴EF=AB=3cm.

故选C.

【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网