题目内容
7.解方程组:(1)$\left\{\begin{array}{l}{\frac{6}{x}+\frac{6}{y}=\frac{1}{2}}\\{\frac{8}{x}-\frac{3}{y}=\frac{3}{10}}\end{array}\right.$.
(2)$\left\{\begin{array}{l}{\frac{x+y}{3}+\frac{3}{x-y}=-\frac{1}{6}}\\{\frac{x+y}{2}+\frac{2}{x-y}=2}\end{array}\right.$.
分析 (1)设$\frac{1}{x}$=u,$\frac{1}{y}$=v,方程组变形后求出u与v的值,进而求出x与y的值;
(2)设x+y=u,$\frac{1}{x-y}$=v,方程组变形后求出u与v的值,进而求出x与y的值.
解答 解:(1)设$\frac{1}{x}$=u,$\frac{1}{y}$=v,
方程组整理得:$\left\{\begin{array}{l}{u+v=\frac{1}{2}①}\\{8u-3v=\frac{3}{10}②}\end{array}\right.$,
①×3+②得:11u=$\frac{9}{5}$,即u=$\frac{9}{55}$,
把u=$\frac{9}{22}$代入①得:v=$\frac{1}{11}$,
∴x=$\frac{55}{9}$,y=11,
经检验,方程组的解为$\left\{\begin{array}{l}{x=\frac{55}{9}}\\{y=11}\end{array}\right.$;
(2)设x+y=u,$\frac{1}{x-y}$=v,
方程组整理得:$\left\{\begin{array}{l}{2u+18v=-1①}\\{u+4v=4②}\end{array}\right.$,
①-②×2得:10v=-9,即v=-$\frac{9}{10}$,
把v=-$\frac{9}{10}$代入②得:u=$\frac{38}{5}$,
∴x+y=$\frac{38}{5}$,x-y=-$\frac{10}{9}$,
经检验,方程组的解为$\left\{\begin{array}{l}{x=\frac{146}{45}}\\{y=\frac{196}{45}}\end{array}\right.$.
点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
| A. | 16 | B. | -16 | C. | 8 | D. | -8 |
| A. | 12分钟 | B. | 15分钟 | C. | 18分钟 | D. | 25分钟 |
| A. | 10 | B. | 20 | C. | 30 | D. | 40 |