题目内容
若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m的值为 ( )
A.6 B.-6 C.12 D.-12
A
使不等式x-1≥2与3x-7<8同时成立的x的整数值是
A.3,4 B.4,5 C.3,4,5 D.不存在
如图1,关于的二次函数经过点,点,点为二次函数的顶点,为二次函数的对称轴,在轴上。
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2S⊿FBC=3 S⊿EBC,若存在求出点F的坐标,若不存在请说明理由。
已知:如图,在四边形ABCD 中,AB ∥ CD,E,F 为对角线
AC 上两点,且AE=CF,DF∥BE.
求证:四边形ABCD 为平行四边形.
如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA边上的点E 处,分别以OC,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.
(1)求OE 的长;
(2)求经过O,D,C 三点的抛物线的解析式;
(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t为何值时,DP=DQ;
(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由
如图,Rt△ABC中,∠ACB=90º,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为 ( )
A. B. C. D.
已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于 .
为筹备班级毕业晚会,班长对全班同学爱吃哪几种水果作了民意调查.根据调查数据决定最终买什么水果应参照的统计量是( ).
A.平均数 B.中位数 C.众数 D.方差
已知关于x的一元二次方程(x-3)(x-2)=|m|.
(1)求证:对于任意实数m,方程总有两个不想等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.