题目内容

4.如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则BE:DF等于8:1.

分析 根据题意,易得△BO3E∽△DO3F和△BO1E∽△DO1A,利用相似的性质得出DF:BE的值,再求出BE:AD的值,进而求出AF:DF.

解答 解:根据题意,在平行四边形ABCD中,
∵AD∥BC,
∴△BO3E∽△DO3F
∴BE:FD=3:1
∵△BO1E∽△DO1A
∴BE:AD=1:3
∴AD:DF=9:1
∴AF:DF=(AD-FD):DF=(9-1):1=8:1
故答案为:8:1.

点评 本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握各定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网