题目内容
观察式子(1-
)(1-
)=(1-
)(1+
)(1-
)(1+
)=
×
×
×
=
,试求(1-
)(1-
)×…×(1-
)(1-
)的值.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 20132 |
| 1 |
| 20142 |
考点:因式分解-运用公式法
专题:
分析:直接利用已知变形求出即可.
解答:解:∵(1-
)(1-
)=(1-
)(1+
)(1-
)(1+
)=
×
×
×
=
,
∴(1-
)(1-
)×…×(1-
)(1-
)
=
×
×
×
×…×
=
.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
∴(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 20132 |
| 1 |
| 20142 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 2015 |
| 2014 |
=
| 2015 |
| 4028 |
点评:此题主要考查了公式法应用,熟练应用平方差公式是解题关键.
练习册系列答案
相关题目