题目内容
如图,在正方形
中,
为对角线
,
的交点,经过点
和点
作⊙
,分别交
,
于点
,
.已知正方形边长为
,⊙
的半径为
,则
的值为__________.
![]()
如图,抛物线
交
轴于点
,
,交
轴于点
,在
轴上方的抛物线上有两点
,
,它们关于
轴对称,点
,
在
轴左侧,
于点
,
于点
,四边形
与四边形
的面积分别为
和
,则
与
的面积之和为__________.
![]()
如图,已知
,
,
,
是⊙
上的四个点,
,
交
于点
,连接
,
.若
,
,则
__________.
![]()
如图,点
,
,
在⊙
上,
,则
等于__________度.
![]()
已知点
,
在二次函数
的图象上,若
,则
__________
.(填“
”“
”“
”)
二次函数
图象的顶点坐标是__________.
- 题型:填空题
- 难度:困难
把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是_____cm.(用m或n的式子表示).
![]()
单项式﹣2xy5的系数是m,次数是n,则m﹣n=_____.
查看答案一列单项式﹣x2,3x3,﹣5x4,7x5.…,按此规律排列,则第9个单项式是_____.
查看答案在3,﹣4,6,﹣7这四个数中,任取两个数相乘,所得的积最大的是_____.
查看答案若a、b互为倒数,则(﹣ab)2017=_____.
查看答案x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为( )
A. 0 B. ﹣1 C. ﹣2 D. 2
查看答案 试题属性- 题型:填空题
- 难度:困难
在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.
![]()
如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律摆.
![]()
(1)第5个“广”字中的棋子个数是 .
(2)第n个“广”字需要多少枚棋子?
查看答案如图,点D在AB上,点E在AC上,AB=AC,AD=AE.试说明∠B=∠C.
![]()
先化简再求值:(a-2)2-(a-1)·(a+1)+5a,其中a=-2.
查看答案小聪和小明沿同一条路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4 km,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O—A—B—C和线段OD分别表示两人离学校的路程s(km)与所经过的时间t(min)之间的关系,请根据图象回答:下列四个结论
![]()
①小聪在图书馆查阅资料的时间为15 min;
②小聪返回学校的速度为
km/min;
③小明离开学校的路程s(km)与所经过的时间t(min)之间的关系式是s=
t;
④当小聪与小明迎面相遇时,他们离学校的路程是
km.
其中正确结论的序号是_____.
查看答案如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=__度.
![]()
- 题型:解答题
- 难度:简单
在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是( )
A.
B.
C.
D.![]()
下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案下列说法正确的是( )
A. “任意画出一个等边三角形,它是轴对称图形”是随机事件
B. 某种彩票的中奖率为
,说明每买1 000张彩票,一定有一张中奖
C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为![]()
D. “概率为1的事件”是必然事件
查看答案如图所示,AB∥CD,BC平分∠ABD,若∠C=40°,则∠D的度数为 ( )
![]()
A. 90° B. 100° C. 110° D. 120°
查看答案下列计算正确的是( )
A. 4x3•2x2=8x6 B. a4+a3=a7 C. (﹣x2)5=﹣x10 D. (a﹣b)2=a2﹣b2
查看答案如图,在平面直角坐标系中,点
,
分别是
轴正半轴,
轴正半轴上两动点,
,
,以
,
为邻边构造矩形
,抛物线
交
轴于点
,
为顶点,
轴于点
.
(
)求
,
的长(结果均用含
的代数式表示);
(
)当
时,求该抛物线的表达式;
(
)在点
在整个运动过程中,若存在
是等腰三角形,请求出所有满足条件的
的值.
![]()
- 题型:单选题
- 难度:中等
二次函数
图象的顶点坐标是__________.
如图,已知⊙
的半径
垂直直线
于点
,点
从点
出发,沿直线
向右运动,同时点
从点
出发沿着圆周按逆时针以相同的速度运动,当点
返回到点
时,点
也停止运动.连接
,
,则阴影部分面积
,
的关系是( ).
![]()
A.
B. 先
,再
,最后![]()
C.
D. 先
,再
,再后![]()
二次函数
的图象,如图所示,有下列
个结论:①
;②
;③
;④
;⑤
中,则其中正确的有( ).
![]()
A. ①③④ B. ②④⑤ C. ①②④ D. ①③⑤
查看答案抛物线
的部分图象如图所示,若
,则
的取值范围是( ).
![]()
A.
B.
C.
或
D.
或![]()
如图,已知
是⊙
的直径,过点
的弦
平行于半径
,若
,则
等于( ).
![]()
A.
B.
C.
D. ![]()
在平面直角坐标系中,若⊙
是以原点为圆心,
为半径的圆,则点
在( ).
A. ⊙
内 B. ⊙
外 C. ⊙
上 D. 不能确定
- 题型:填空题
- 难度:简单
如图,
,
,
交于
,
,
,
,则
长为( ).
![]()
A.
B.
C.
D. ![]()
将抛物线
先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ).
A.
B.
C.
D. ![]()
若二次函数
的图象经过点
,则
的值为( ).
A.
B.
C.
D. ![]()
若
,则
的值等于( ).
A.
B.
C.
D. ![]()
【问题提出】
学习了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你利用图③,在图③中用尺规作出△DEF,使△DEF和△ABC不全等.
![]()
如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
![]()
- 题型:单选题
- 难度:简单
已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:
①如果添加条件“AB=AC”,那么△ABC是等边三角形;
②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;
③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.
上述说法中,正确的有( )
A. 3个 B. 2个 C. 1个 D. 0个
A 【解析】有一个角是60°的等腰三角形是等边三角形,①②③都可以说明三角形是等腰三角形,故都正确,故选A如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB的度数为( )
![]()
A. 90° B. 95° C. 100° D. 105°
查看答案如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为
![]()
A. 40° B. 36° C. 30° D. 25°
查看答案如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )
A. (1,2) B. (﹣1,﹣2) C. (﹣1,2) D. (﹣2,1)
查看答案如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
![]()
A. 15 B. 30 C. 45 D. 60
查看答案 试题属性- 题型:单选题
- 难度:简单