题目内容
18.(1)求证:△ABE与△BEF相似.
(2)若DE=3,AB=9.求sin∠CBF.
分析 (1)由FE⊥BE得到∠BEF=90°,则利用等角的余角相等得到∠ABE=∠DEF,则可证明△ABE∽△DEF,得到$\frac{BE}{EF}$=$\frac{AB}{DE}$,由于AE=DE,则$\frac{AB}{BE}$=$\frac{AE}{EF}$,加上∠A=∠BEF,于是可判断△ABE∽△EBF;
(2)由△ABE∽△DEF得到$\frac{AE}{DF}$=$\frac{AB}{DE}$,即$\frac{DF}{3}$=$\frac{9}{3}$,可计算出DF=1,所以CF=8,然后在Rt△BCF中,利用勾股定理可得到BF=10,然后根据正弦的定义求解.
解答 (1)证明:∵FE⊥BE,
∴∠BEF=90°,
∴∠AEB+∠DEF=90°,
而∠AEB+∠ABE=90°,
∴∠ABE=∠DEF,
而∠A=∠D,
∴△ABE∽△DEF,
∴$\frac{BE}{EF}$=$\frac{AB}{DE}$,
∵E是AD的中点,
∴AE=DE,
∴$\frac{AB}{AE}$=$\frac{BE}{EF}$,
即$\frac{AB}{BE}$=$\frac{AE}{EF}$,
∵∠A=∠BEF,
∴△ABE∽△EBF;
(2)解:∵△ABE∽△DEF,
∴$\frac{AE}{DF}$=$\frac{AB}{DE}$,即$\frac{DF}{3}$=$\frac{9}{3}$,
∴DF=1,
∵CD=AB=9,
∴CF=8,
在Rt△BCF中,
∵BC=AD=6,CF=8,
∴BF=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∴sin∠CBF=$\frac{CF}{BF}$=$\frac{8}{10}$=$\frac{4}{5}$.
点评 本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时主要利用相似比计算相应线段的长和得到对应角相等.解决(2)的关键是证明△ABE∽△DEF,