题目内容
12.分析 首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③④正确.
解答 解:∵△ABC和△DCE均是等边三角形,
∴BC=AC,CD=CE,∠ACB=∠ECD=60°,
∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,
∴△BCD≌△ACE(SAS),
∴AE=BD,故①正确;
∠CBD=∠CAE,
∵∠BCA=∠ACG=60°,AC=BC,
∴△BCF≌△ACG(ASA),
∴AG=BF,故②正确;
同理:△DFC≌△EGC(ASA),
∴CF=CG,
∴△CFG是等边三角形,
∴CF=CG
∴∠CFG=∠FCB=60°,
∴FG∥BE,故③④正确;
故答案为:①②③④.
点评 此题考查了等边三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定和性质是解题的关键.
练习册系列答案
相关题目
17.
如图,在边长为12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,若BF=3,则小正方形边长为( )
| A. | 6 | B. | 5 | C. | $\frac{15}{4}$ | D. | $\sqrt{12}$ |
4.若a2=(-3)2,那么a等于( )
| A. | -3 | B. | 3 | C. | 9 | D. | 3或-3 |