题目内容

如图,在△ABC中,AD为角平分线,CE⊥AD,F为BC中点.
求证:EF=(AB-AC).

 

 

证明:如图,延长CE交AB于G,
∵AD为角平分线,
∴∠EAG=∠EAC,
∵CE⊥AD,
∴∠AEG=∠AEC=90°,
在△AGE和△ACE中,

∠EAG=∠EAC, AE=AE, ∠AEG=∠AEC=90°,
∴△AGE≌△ACE(ASA),
∴AG=AC,CE=GE,
又∵F为BC中点,
∴EF是△BCG的中位线,
∴EF=BG=(AB-AG)=(AB-AC),
即EF=(AB-AC).

 

【解析】

延长CE交AB于G,利用“角边角”证明△AGE和△ACE全等,根据全等三角形对应边相等可得AG=AC,CE=GE,然后求出EF是△BCG的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半证明即可.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网