题目内容

12.如图,△ABC,点E是AB上一点,D是BC的中点,连接ED并延长至点F,使DF=DE,连接CF,则线段BE与线段CF的关系为BE=CF且BE∥CF.

分析 由D是BC的中点,得到BD=CD,推出△BDE≌△CDF,根据全等三角形的性质得到BE=CF,∠B=∠DCF,根据平行线的判定即可得到结论.

解答 解:∵D是BC的中点,
∴BD=CD,
在△BDE与△CDF中,
$\left\{\begin{array}{l}{BD=CD}\\{∠BDE=∠CDF}\\{DE=DF}\end{array}\right.$,
∴△BDE≌△CDF,
∴BE=CF,∠B=∠DCF,
∴BE∥CF.
故答案为:BE=CF,BE∥CF.

点评 本题考查了全等三角形的判定和性质,平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网