题目内容
18.| A. | B. | C. | D. |
分析 设CD与⊙O相切于点E,连结OA、OB、OE,如图,根据切线长定理得CA=CE,DE=DB,根据切线的性质得OA⊥PA,OB⊥PB,OE⊥CD,则利用角平分线定理的逆定理可判断OC平分∠AOE,OD平分∠BOE,则∠1=∠2,∠3=∠4,所以∠COD=$\frac{1}{2}$∠AOB,接着利用四边形内角和得到∠AOB=180°-∠P=180°-x°,所以y=90°-$\frac{1}{2}$x(0<x<180°),然后利用此解析式对各选项进行判断即可.
解答 解:设CD与⊙O相切于点E,连结OA、OB、OE,如图,
∵PA、PB、CD是⊙O的三条切线,
∵CA=CE,DE=DB,OA⊥PA,OB⊥PB,OE⊥CD,
∴OC平分∠AOE,OD平分∠BOE,
∴∠1=∠2,∠3=∠4,
∴∠COD=∠2+∠3=$\frac{1}{2}$∠AOB,
∵∠AOB=180°-∠P=180°-x°,
∴y=90°-$\frac{1}{2}$x(0<x<180°).
故选B.
点评 本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是切线的性质的运用.
练习册系列答案
相关题目
3.
如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边RP在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP为半径画弧交数轴负半轴于点P1,则P1表示的是( )
| A. | -2 | B. | -2$\sqrt{2}$ | C. | 1-2$\sqrt{2}$ | D. | 2$\sqrt{2}$-1 |
10.如果给定数组中每一个数都加上同一个非零常数,则数据的( )
| A. | 平均数不变,方差不变 | B. | 平均数改变,方差改变 | ||
| C. | 平均数改变,方差不变 | D. | 平均数不变,方差改变 |
8.某公司准备投资开发A、B两种新产品,信息部通过调研得到两条信息:
信息一:如果投资A种产品,所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;
信息二:如果投资B种产品,所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx
根据公司信息部报告,yA、yB(万元)与投资金额x(万元)的部分对应值如下表所示:
(1)填空:yA=0.8x;yB=-0.1x2+2.4x;
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),B种产品的投资金额为x(万元),试求出W与x之间的函数关系式;
(3)请你设计一个在(2)中公司能获得最大总利润的投资方案.
信息一:如果投资A种产品,所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;
信息二:如果投资B种产品,所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx
根据公司信息部报告,yA、yB(万元)与投资金额x(万元)的部分对应值如下表所示:
| X(万元) | 1 | 2 |
| yA(万元) | 0.8 | 1.6 |
| yB(万元) | 2.3 | 4.4 |
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),B种产品的投资金额为x(万元),试求出W与x之间的函数关系式;
(3)请你设计一个在(2)中公司能获得最大总利润的投资方案.