题目内容

12.如图,已知EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
解:∵EF∥AD(已知)
∴∠2=∠3
又∵∠1=∠2(已知)
∴∠1=∠3(等量代换)
∴AB∥DG
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)
∵∠BAC=70°(已知)
∴∠AGD=110°.

分析 根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质推出∠BAC+∠DGA=180°即可.

解答 解:∵EF∥AD(已知),
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠2,
∴∠1=∠3(等量代换),
∴AB∥DG(内错角相等,两直线平行),
∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),
∵∠BAC=70°,
∴∠AGD=110°,
故答案为:∠3,∠3,DG,∠AGD,(两直线平行,同旁内角互补),110°.

点评 本题考查了对平行线的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,反之亦然.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网