题目内容
分式方程
+
+
+
=4的无理数根为 .
| 1 |
| x-5 |
| 2 |
| x-4 |
| 3 |
| x-3 |
| 4 |
| x-2 |
考点:分式方程的解
专题:
分析:变形得:
-1+
-1+
-1+
-1=0,通分得出
+
+
+
=0,求出6-x=0,
+
+
+
=0,即可求出答案.
| 1 |
| x-5 |
| 2 |
| x-4 |
| 3 |
| x-3 |
| 4 |
| x-2 |
| 6-x |
| x-5 |
| 6-x |
| x-4 |
| 6-x |
| x-3 |
| 6-x |
| x-2 |
| 1 |
| x-5 |
| 1 |
| x-4 |
| 1 |
| x-3 |
| 1 |
| x-2 |
解答:解:∵变形得:
-1+
-1+
-1+
-1=0,
∴
+
+
+
=0,
∴(6-x)(
+
+
+
)=0,
∴6-x=0或
+
+
+
=0,
∴x=6(舍去),
+
=-
-
,
∴
=-
,
∴(2x-7)[
+
=0,
∴x=3.5(舍去),(x-5)(x-2)+(x-4)(x-3)=0,
∴x2-7x+11=0,
x1=
,x2=
,
经检验两个根都是原方程的解,
故答案为:x1=
,x2=
.
| 1 |
| x-5 |
| 2 |
| x-4 |
| 3 |
| x-3 |
| 4 |
| x-2 |
∴
| 6-x |
| x-5 |
| 6-x |
| x-4 |
| 6-x |
| x-3 |
| 6-x |
| x-2 |
∴(6-x)(
| 1 |
| x-5 |
| 1 |
| x-4 |
| 1 |
| x-3 |
| 1 |
| x-2 |
∴6-x=0或
| 1 |
| x-5 |
| 1 |
| x-4 |
| 1 |
| x-3 |
| 1 |
| x-2 |
∴x=6(舍去),
| 1 |
| x-5 |
| 1 |
| x-2 |
| 1 |
| x-4 |
| 1 |
| x-3 |
∴
| 2x-7 |
| (x-5)(x-2) |
| 2x-7 |
| (x-4)(x-3) |
∴(2x-7)[
| 1 |
| (x-5)(x-2) |
| 1 |
| (x-4)(x-3) |
∴x=3.5(舍去),(x-5)(x-2)+(x-4)(x-3)=0,
∴x2-7x+11=0,
x1=
7+
| ||
| 2 |
7-
| ||
| 2 |
经检验两个根都是原方程的解,
故答案为:x1=
7+
| ||
| 2 |
7-
| ||
| 2 |
点评:本题考查了分式方程的应用,主要考查学生的计算能力题目比较好,但是难度偏大.
练习册系列答案
相关题目
若点P(a,-2)与Q(3,b)关于y轴对称,则以a、b为根的一元二次方程是( )
| A、x2+5x-6=0 |
| B、x2-5x-6=0 |
| C、x2-5x+6=0 |
| D、x2+5x+6=0 |