题目内容

分式方程
1
x-5
+
2
x-4
+
3
x-3
+
4
x-2
=4的无理数根为
 
考点:分式方程的解
专题:
分析:变形得:
1
x-5
-1+
2
x-4
-1+
3
x-3
-1+
4
x-2
-1=0,通分得出
6-x
x-5
+
6-x
x-4
+
6-x
x-3
+
6-x
x-2
=0,求出6-x=0,
1
x-5
+
1
x-4
+
1
x-3
+
1
x-2
=0,即可求出答案.
解答:解:∵变形得:
1
x-5
-1+
2
x-4
-1+
3
x-3
-1+
4
x-2
-1=0,
6-x
x-5
+
6-x
x-4
+
6-x
x-3
+
6-x
x-2
=0,
∴(6-x)(
1
x-5
+
1
x-4
+
1
x-3
+
1
x-2
)=0,
∴6-x=0或
1
x-5
+
1
x-4
+
1
x-3
+
1
x-2
=0,
∴x=6(舍去),
1
x-5
+
1
x-2
=-
1
x-4
-
1
x-3

2x-7
(x-5)(x-2)
=-
2x-7
(x-4)(x-3)

∴(2x-7)[
1
(x-5)(x-2)
+
1
(x-4)(x-3)
=0,
∴x=3.5(舍去),(x-5)(x-2)+(x-4)(x-3)=0,
∴x2-7x+11=0,
x1=
7+
5
2
,x2=
7-
5
2

经检验两个根都是原方程的解,
故答案为:x1=
7+
5
2
,x2=
7-
5
2
点评:本题考查了分式方程的应用,主要考查学生的计算能力题目比较好,但是难度偏大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网